首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21135篇
  免费   2395篇
  国内免费   2036篇
电工技术   503篇
综合类   2297篇
化学工业   1061篇
金属工艺   3990篇
机械仪表   1890篇
建筑科学   4718篇
矿业工程   1749篇
能源动力   470篇
轻工业   267篇
水利工程   1757篇
石油天然气   617篇
武器工业   188篇
无线电   439篇
一般工业技术   2971篇
冶金工业   1685篇
原子能技术   81篇
自动化技术   883篇
  2024年   38篇
  2023年   357篇
  2022年   573篇
  2021年   795篇
  2020年   779篇
  2019年   637篇
  2018年   646篇
  2017年   800篇
  2016年   911篇
  2015年   897篇
  2014年   1305篇
  2013年   1282篇
  2012年   1571篇
  2011年   1774篇
  2010年   1262篇
  2009年   1283篇
  2008年   1155篇
  2007年   1453篇
  2006年   1313篇
  2005年   1017篇
  2004年   884篇
  2003年   820篇
  2002年   684篇
  2001年   571篇
  2000年   516篇
  1999年   451篇
  1998年   315篇
  1997年   280篇
  1996年   197篇
  1995年   195篇
  1994年   173篇
  1993年   111篇
  1992年   110篇
  1991年   77篇
  1990年   87篇
  1989年   69篇
  1988年   53篇
  1987年   24篇
  1986年   16篇
  1985年   11篇
  1984年   9篇
  1983年   8篇
  1982年   13篇
  1981年   4篇
  1980年   6篇
  1979年   12篇
  1964年   2篇
  1959年   5篇
  1958年   3篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
2.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
3.
Face aging (FA) for young faces refers to rendering the aging faces at target age for an individual, generally under 20s, which is an important topic of facial age analysis. Unlike traditional FA for adults, it is challenging to age children with one deep learning-based FA network, since there are deformations of facial shapes and variations of textural details. To alleviate the deficiency, a unified FA framework for young faces is proposed, which consists of two decoupled networks to apply aging image translation. It explicitly models transformations of geometry and appearance using two components: GD-GAN, which simulates the Geometric Deformation using Generative Adversarial Network; TV-GAN, which simulates the Textural Variations guided by the age-related saliency map. Extensive experiments demonstrate that our method has advantages over the state-of-the-art methods in terms of synthesizing visually plausible images for young faces, as well as preserving the personalized features.  相似文献   
4.
The evolution of strain hardening behavior of the Fe_(50)(CoCrMnNi)_(50) medium-entropy alloy as a function of the fraction of recrystallized microstructure and the grain size was studied using the Hollomon and Ludwigson equations.The specimens under study were partially recrystallized,fully recrystallized with ultrafine-grained microstructure,and fully recrystallized with coarse grains.The yield strength decreases steadily as the fraction of recry stallized micro structure and grain size increases due to the recovery process and the Hall-Petch effect.Interestingly,the bimodal grain distribution was found to have a significant impact on strain hardening during plastic deformation.For instance,the highest ultimate tensile strength was exhibited by a 0.97 μm specimen,which was observed to contain a bimodal grain distribution.Furthermore,using the Ludwigson equation,the effect of the bimodal grain distribution was established from the behavior of K_2 and n1 curves.These curves tend to show very high values in the specimens with a bimodal grain distribution compared to those that show a homogenous grain distribution.Additionally,the bimodal grain distribution contributes to the extensive L(u|")ders strain observed in the 0.97 μm specimen,which induces a significant deviation of the Hollomon equation at lower strains.  相似文献   
5.
Many astonishing biological collective behaviors exist in nature, and artificial microrobotic swarms have been developed by emulating these scenarios. However, these microswarms typically have single structures and lack the adaptability that many biological swarms exhibit to thrive in complex environments. Inspired by viscoelastic fire ant aggregations and using a combination of experiment and simulation, a strategy to trigger ferrofluid droplets into forming microswarms exhibiting both liquid-like and solid-like behaviors is reported. By spatiotemporally programming an applied magnetic field, microswarms can be liquefied to implement reversible elongation with a high aspect ratio and solidified into entireties to perform overturning and bending behaviors. It is demonstrated that reconfigurability enables the microswarm to be a mobile dexterous micromanipulator, acting not only as a soft “octopus arm” to explore a confined environment and grasp a targeted object but also adaptively navigate multiple terrains, such as uneven surfaces, curved grooves, complex mazes, high steps, narrow channels, and even wide gaps. This microrobotic swarm can reconfigure both shapes and tasks based on the demands of the environment, presenting novel solutions for a variety of applications.  相似文献   
6.
以禹州市梁北矿为研究区,利用2018年11月—2020年6月间35景5 m×20 m分辨率Sentinel-1A数据,采用InSAR技术,利用SBAS(短基线集InSAR)雷达干涉测量方法对梁北矿进行地面沉降信息提取解译,并通过实地调查成果认为,采用InSAR技术适合在矿区开展地表变形监测。  相似文献   
7.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
8.
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing (DFOS), high-density electrical resistivity tomography (HD-ERT) and close-range photogrammetry (CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks. Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, real-time and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.  相似文献   
9.
高面板坝的变形对面板的安全运行有着特别重要的影响,国内外已建的高面板坝工程中,因坝体变形大导致防渗面板挤压破损,坝体渗漏量大的实例较多,不得不降低水库水位进行修复处理,造成较大的经济损失乃至给大坝的长期运行留下安全隐患。通过发生挤压破损的实例分析,发现变形控制缺乏系统性是发生面板挤压破损的主要因素,为预防面板破损,系统提出了“控制坝体总变形,转化有害变形,适应纵向变形”的坝体变形控制方法,并在使用软硬岩混合料筑坝的董箐面板堆石坝中得到的应用,取得了良好效果,该工程运行至今达十余年,未见面板有挤压破损迹象,该方法对建设200 m以上乃至300 m级超高面板坝具有重要借鉴意义。  相似文献   
10.
《Ceramics International》2021,47(20):28685-28697
Because the CMAS corrosion and phase transformation at elevated temperatures above 1250 °C have limited the applications of traditional YSZ, the design of novel thermal barrier materials is a hotspot. GdTaO4 is considered as a type of potential novel thermal barrier material owing to its low thermal conductivity. In this study, the mechanical and thermal properties, CMAS corrosion resistance, and the wettability of the GdTaO4 were studied and compared with that of YSZ. The results show that the coefficient of thermal expansion and hardness of GdTaO4 are 14.1 × 10−6 K−1 (1350 °C) and 534.2 Hv0.3 respectively. The thickness of CMAS reaction layer of GdTaO4 is ~30.8 μm after 24 h reaction at 1350 °C, which is thinner than that of YSZ. After corrosion reaction, the CMAS glass aggregated instead of completely disappearing or continuously extending over the surface of GdTaO4. The main reaction product is Ca2Ta2O7, and the anorthite phase may not be detected, which is similar to YTaO4. By comparison, the dense substrate of YSZ became porous and CMAS glass has disappeared after 10 h. CMAS corrosion at 1350 °C. The on-line contact angle results show that the wettability of CMAS on GdTaO4 is worse than that on YSZ at 1350 °C, while the opposite of the work of adhesion, which indicates that GdTaO4 can remove liquid CMAS more easily than YSZ TBCs during the service. Furthermore, the corrosion depth and areas of GdTaO4 are smaller than those of YSZ in the same situation. These findings suggest that GdTaO4 possesses better high-temperature properties and CMAS corrosion resistance than YSZ as a kind of potential of thermal barrier material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号